(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(X) → cons(X, f(g(X)))
g(0') → s(0')
g(s(X)) → s(s(g(X)))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(X) → cons(X, f(g(X)))
g(0') → s(0')
g(s(X)) → s(s(g(X)))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
g,
selThey will be analysed ascendingly in the following order:
g < f
(6) Obligation:
Innermost TRS:
Rules:
f(
X) →
cons(
X,
f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
g, f, sel
They will be analysed ascendingly in the following order:
g < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':s4_0(
n6_0)) →
gen_0':s4_0(
+(
1,
*(
2,
n6_0))), rt ∈ Ω(1 + n6
0)
Induction Base:
g(gen_0':s4_0(0)) →RΩ(1)
s(0')
Induction Step:
g(gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
s(s(g(gen_0':s4_0(n6_0)))) →IH
s(s(gen_0':s4_0(+(1, *(2, c7_0)))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
X) →
cons(
X,
f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, sel
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
Innermost TRS:
Rules:
f(
X) →
cons(
X,
f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
sel
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_0':s4_0(
n474_0),
gen_cons3_0(
+(
1,
n474_0))) →
gen_0':s4_0(
0), rt ∈ Ω(1 + n474
0)
Induction Base:
sel(gen_0':s4_0(0), gen_cons3_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
sel(gen_0':s4_0(+(n474_0, 1)), gen_cons3_0(+(1, +(n474_0, 1)))) →RΩ(1)
sel(gen_0':s4_0(n474_0), gen_cons3_0(+(1, n474_0))) →IH
gen_0':s4_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
f(
X) →
cons(
X,
f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
sel(gen_0':s4_0(n474_0), gen_cons3_0(+(1, n474_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n4740)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
f(
X) →
cons(
X,
f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
sel(gen_0':s4_0(n474_0), gen_cons3_0(+(1, n474_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n4740)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
f(
X) →
cons(
X,
f(
g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
Types:
f :: 0':s → cons
cons :: 0':s → cons → cons
g :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sel :: 0':s → cons → 0':s
hole_cons1_0 :: cons
hole_0':s2_0 :: 0':s
gen_cons3_0 :: Nat → cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(n6_0)) → gen_0':s4_0(+(1, *(2, n6_0))), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)